Update on the management of neurometabolic disorders in children.

Jane Ashworth
Consultant Paediatric Ophthalmologist
Manchester Royal Eye Hospital, UK
Professor Kristina Fahnehjelm
St Eriks Eye Hospital, Sweden
Professor Gail Summers
Minnesota Lions Children’
Professor Chris Lloyd
Manchester Royal Eye Hospital, UK

Neuro-metabolic disorders in children

- Rare, genetic disorders
- Ocular phenotype often specific and unique
- Severe systemic problems may overshadow ocular issues: learning difficulties, multiple medical problems, shortened lifespan
- New systemic treatments may prolong and improve quality of life
- New technologies lead to better understanding and treatment of ocular complications

- Update on the management of Lysosomal Storage Disorders (Jane Ashworth)
- Corneal transplantation in MPS (Gail Summers)
- Mitochondrial disease: LCHAD deficiency (Kristina Fahnehjelm)
- Interesting cases (Jane Ashworth and Chris Lloyd)
Lysosomal storage disorders in children

- More than 50 very rare inherited metabolic diseases
- Result from deficiency of specific lysosomal enzymes required for normal cellular metabolism
- Life limiting
- Ocular features common, unique, challenging
- May be present at early stage and give clue to diagnosis
- New treatments improve prognosis, less certain effect on eyes and vision
Common Lysosomal Storage Disorders and Current Treatments

<table>
<thead>
<tr>
<th>LSD</th>
<th>Function effected</th>
<th>Established treatment</th>
<th>Treatment in development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucopolysaccharidosis</td>
<td>GAG metabolism</td>
<td>ERT (I, II, IVa, VI), HSCT (I, VI)</td>
<td>Yes</td>
</tr>
<tr>
<td>Fucosidosis</td>
<td>Degradation of glycoproteins</td>
<td>No (HSCT)</td>
<td>ERT</td>
</tr>
<tr>
<td>Mannosidosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sialidosis type 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabrys disease</td>
<td>Degradation of sphingolipids</td>
<td>ERT, Miglustat (SRT)</td>
<td>Yes</td>
</tr>
<tr>
<td>Gauchers disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niemann Pick type A and B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metachromic leukodystrophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Phenotype</td>
<td>Treatment</td>
<td>Status</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Pompe disease</td>
<td>Degradation of glycogen</td>
<td>ERT</td>
<td>Yes</td>
</tr>
<tr>
<td>Cystinosis</td>
<td>Transport defect</td>
<td>Oral cysteamine</td>
<td>Yes</td>
</tr>
<tr>
<td>Neuronal Ceroid Lipofuscinosis</td>
<td>Lysosomal protein deficiency</td>
<td>No</td>
<td>Yes (ERT)</td>
</tr>
</tbody>
</table>

Ocular manifestations of LSDs

<table>
<thead>
<tr>
<th>Site</th>
<th>Phenotype</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornea</td>
<td>Opacification</td>
<td>Mucopolysaccharidoses (MPSI, IV and VI, VII)</td>
</tr>
<tr>
<td></td>
<td>Crystals</td>
<td>Cystinosis</td>
</tr>
<tr>
<td>Location</td>
<td>Condition</td>
<td>Disease</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Verticillata</td>
<td>Fabry's disease</td>
<td></td>
</tr>
<tr>
<td>Localised opacity</td>
<td>Fucosidosis</td>
<td></td>
</tr>
<tr>
<td>Lens</td>
<td>Cataract</td>
<td>Fabry's disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mannosidosis, MPSIV</td>
</tr>
<tr>
<td>Conjunctiva</td>
<td>Vascular tortuosity</td>
<td>Fabry's disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farber's disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gaucher's type 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fucosidosis</td>
</tr>
<tr>
<td>Retina</td>
<td>Cherry red spot</td>
<td>Niemann-Pick type A and B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GM1 and 2 gangliosidosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sialidosis type 1 and 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metachromic leukodystrophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferber's lipogranulomatosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galactosialidosis</td>
</tr>
<tr>
<td>Retinopathy</td>
<td></td>
<td>MPSI, II, III</td>
</tr>
<tr>
<td>Bulls eye maculopathy</td>
<td>Neuronal ceroid lipofuscinosis</td>
<td></td>
</tr>
<tr>
<td>Retinal vascular tortuosity</td>
<td>Fabry's disease</td>
<td>Fucosidosis</td>
</tr>
</tbody>
</table>
| Optic nerve | Optic atrophy | Mucopolysaccharidoses
Neuronal ceroid lipofuscinosis
Niemann-Pick type A |
|-------------|---------------|-----------------------------|
| Ocular motility | Oculomotor apraxia
(Saccadic Initiation Failure)
Vertical supranuclear gaze palsy | Gauchers type 3
Niemann-Pick type C |
The Mucopolysaccharidoses (MPS)

- Defect of glycosaminoglycan degradation leading to accumulation in systemic and ocular tissues
- MPS I (Hurler, Hurler-Scheie and Scheie), MPSII (Hunter’s), MPSIII (Sanfillipo’s), MPSIV (Morquio’s), MPSVI (Maroteaux-Lamy), MPSVII Sly’s, MPSIX Natowicz
- Onset in infancy- kyphoscoliosis, recurrent ENT infections
- Skeletal, cardiac, respiratory, gastrointestinal and neurological manifestations
- Ocular manifestations variable but corneal clouding may be present from birth

The cornea in MPS

- Corneal opacification characteristic of
 - MPSI (Hurler’s, Hurler-Scheie and Scheie’s)
 - MPSIV (Morquio’s)
 - MPSVI (Maroteaux-Lamy)
 - MPSVII (Sly’s)
- Photophobia, reduced vision later
- Slowly progressive if untreated
- Exposure keratopathy, vascularisation

Anterior segment changes in MPS

- Central corneal thickness correlates with corneal opacification (Kottler et al Cornea 2010; Connell et al J AAPOS 2009)
- Variable central corneal thickness (Kottler et al Cornea 2010)
- Progressive increase in peripheral corneal thickness with time (Casanova et al Cornea 2001)
- Progressive thickening of cornea and altered hysteresis
 (Fahnehjelm et al Acta Ophthalmol. 2011)
- Changes in anterior chamber; narrowing of angle, iris thickening (Ahmed et al Eye 2014)
Optic neuropathy in MPS

- “Full” appearance of optic nerves in MPS
 - Increased thickness of sclera
 - More susceptible to damage from raised ICP

Raised ICP may have optic atrophy as only manifestation and may result in profound visual loss

Glaucoma in MPS

- Rare- prevalence 2.1-12.5%
- May result in profound loss of vision
- Challenging to diagnose and monitor
- IOP affected by
 - technique (i-care)
 - corneal thickness and hysteresis
- Optic discs may be effected by GAG deposition, poor view due to corneal opacity and poor dilation
- Visual fields effected by cooperation and retinopathy

Retinopathy in MPS

- MPSI, II and III

- Later onset of nyctalopia and peripheral visual field loss
- Later central vision effected
- ERG progressive attenuation in dark then light adapted conditions
Retinal detachment (MPSII)

Enzyme replacement therapy in MPS
- Weekly infusion MPSI (laronidase), II (elaprase), IVa (elosulfase) and VI (galsulfase)
- Improvement in systemic parameters (walking ability, endurance and pulmonary function) and reduced urine GAG excretion in MPSI and MPSII (Jameson et al Cochrane Database Syst Rev 2013; da Silva et al Cochrane Database Syst Rev 2014)
- Early treatment in MPSI, II and VI may improve clinical course in family studies (Lampe et al JIMD Rep 2014, Jones et al.....)
- Lifelong treatment, disease progression can still occur
- Immune reactions, difficult delivery to brain, bone, heart valves and eye

Other treatments for MPS
- HSCT
 - Pre and peri-HSCT ERT in MPSI Hurler’s diagnosed before age 2 years (neurological effect)
 - MPSVI rarely
- Gene therapy
 - Phase I/II clinical trails of intra-cerebral gene therapy in MPSIIIA (Tardieu et al Hum Gene Ther 2014) and intrathecal in MPSII and IIIa (refs)
 - Stem cell gene therapy in MPSI and IIIa (autologous bone marrow transplantation with gene therapy-cures MPSIII mice)- has been done in MLD

Effect of systemic treatment on the eye in MPS
- Lack of objective assessment of ocular condition
 - poor correlation with visual acuity, variability in VA measurements
 - Subjective clinical grading of opacification
 - Photography-depend on illumination, focus, cooperation
- Iris camera imaging and Pentacam densitometry used to quantify corneal clouding (Aslam et al BJO 2012, Elflein et al BJO 2013)
Effect of early treatment on the eye in MPS

- MPSI L490P case series 12 patients (Chan et al Eye 2013 Does the timing of treatment affect the ocular phenotype in patients with Mucopolysaccharidosis I homozygous for the L490P mutation?)
- Limitations- unknown variability in phenotype, subjective assessment of corneal clouding, variable follow-up
- Dog model- high dose iv ERT prevented or improved ocular features (Newkirk et al IOVS 2011)

Local treatment for corneal clouding in MPS

- Corneal keratocytes stable population
- Dendritic cells from limbal blood vessels (and aqueous)
- Adenoviral transduction of keratocytes in canine MPSVII cornea (J Control Release 2014)
- Human umbilical mesenchymal stem cells intra-stromally transplanted into corneas of MPSVII mice reduced corneal haze and decreased GAG content (Stem cells 2013 31(10)2116-26)

Summary

- Wide range of ocular phenotypes
- Helpful in diagnosis
- Need to be aware of new treatments- ERT, HSCT, substrate reduction, gene therapy
- Visual problems more relevant when improved quality of life and life expectancy
- New technologies for ocular assessment to assess new treatment effects